Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Ter Arkh ; 95(3): 203-209, 2023 Apr 26.
Article in Russian | MEDLINE | ID: covidwho-20238556

ABSTRACT

AIM: Assess the functional state of trespiratory system and effectiveness of therapeutic tactics for broncho-obstructive syndrome (BOS) in patients in the post-COVID period. MATERIALS AND METHODS: A two-center cohort prospective study included 10 456 and 89 patients, respectively. A comprehensive assessment of the respiratory system included clinical, laboratory and functional data, spirometry, body plethysmography, and a study of diffusive capacity of the lungs (DLCO). Therapy consisted of budesonide suspension or fixed combination beclomethasone dipropionate/formoterol (EMD BDP/FORM). RESULTS: The frequency of BOS in the cohort was 72% (7497 patients). In 13% (n=974) of cases, bronchial asthma was diagnosed for the first time, in 4.4% (n=328) - chronic obstructive pulmonary disease. Risk factors for the development and decrease in DLCO in the post-COVID period were identified. In the group of complex instrumental examination of lung function, the absence of violations of spirometric data and indicators determined by body plethysmography was determined. CONCLUSION: Risk factors for BOS in post-COVID period are atopy, a history of frequent acute respiratory infections, smoking, blood eosinophilia, moderate and severe forms of COVID-19. The advantage of a fixed combination of EMD BDP/FORM in MART mode compared with nebulized suspension budesonide + solution of salbutamol in treatment of BOS was shown. Risk factors for DLCO disorders were established: severe COVID-19, hospitalization in the intensive care unit, the need for additional oxygen therapy.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , Bronchodilator Agents/therapeutic use , Prospective Studies , COVID-19/complications , COVID-19/epidemiology , Beclomethasone/adverse effects , Formoterol Fumarate , Budesonide/therapeutic use , Administration, Inhalation
2.
Ann Intern Med ; 176(5): 667-675, 2023 05.
Article in English | MEDLINE | ID: covidwho-2302441

ABSTRACT

BACKGROUND: Previous trials have demonstrated the effects of fluvoxamine alone and inhaled budesonide alone for prevention of disease progression among outpatients with COVID-19. OBJECTIVE: To determine whether the combination of fluvoxamine and inhaled budesonide would increase treatment effects in a highly vaccinated population. DESIGN: Randomized, placebo-controlled, adaptive platform trial. (ClinicalTrials.gov: NCT04727424). SETTING: 12 clinical sites in Brazil. PARTICIPANTS: Symptomatic adults with confirmed SARS-CoV-2 infection and a known risk factor for progression to severe disease. INTERVENTION: Patients were randomly assigned to either fluvoxamine (100 mg twice daily for 10 days) plus inhaled budesonide (800 mcg twice daily for 10 days) or matching placebos. MEASUREMENTS: The primary outcome was a composite of emergency setting retention for COVID-19 for more than 6 hours, hospitalization, and/or suspected complications due to clinical progression of COVID-19 within 28 days of randomization. Secondary outcomes included health care attendance (defined as hospitalization for any cause or emergency department visit lasting >6 hours), time to hospitalization, mortality, patient-reported outcomes, and adverse drug reactions. RESULTS: Randomization occurred from 15 January to 6 July 2022. A total of 738 participants were allocated to oral fluvoxamine plus inhaled budesonide, and 738 received placebo. The proportion of patients observed in an emergency setting for COVID-19 for more than 6 hours or hospitalized due to COVID-19 was lower in the treatment group than the placebo group (1.8% [95% credible interval {CrI}, 1.1% to 3.0%] vs. 3.7% [95% CrI, 2.5% to 5.3%]; relative risk, 0.50 [95% CrI, 0.25 to 0.92]), with a probability of superiority of 98.7%. No relative effects were found between groups for any of the secondary outcomes. More adverse events occurred in the intervention group than the placebo group, but no important differences between the groups were detected. LIMITATION: Low event rate overall, consistent with contemporary trials in vaccinated populations. CONCLUSION: Treatment with oral fluvoxamine plus inhaled budesonide among high-risk outpatients with early COVID-19 reduced the incidence of severe disease requiring advanced care. PRIMARY FUNDING SOURCE: Latona Foundation, FastGrants, and Rainwater Charitable Foundation.


Subject(s)
COVID-19 , Adult , Humans , Budesonide/adverse effects , Fluvoxamine , SARS-CoV-2 , COVID-19 Drug Treatment , Treatment Outcome
3.
Ann Fam Med ; (21 Suppl 1)2023 01 01.
Article in English | MEDLINE | ID: covidwho-2262987

ABSTRACT

Background The effectiveness of repurposed treatments with supportive evidence for higher risk individuals with COVID-19 in the community is unknown. In the UK PRINCIPLE national platform trial we aimed to determine whether 're-purposed medicines' (hydroxychloroquine, azithromycin, doxycycline, colchicine, inhaled budesonide, and other interventions) reduced time to recovery and COVID-19 related hospitalisations/deaths among people at higher risk of COVID-19 complications in the community. We mainly report the findings for budesonide arm here. Methods Participants in this multicentre, open-label, multi-arm, adaptive platform randomised controlled trial were aged ≥65, or ≥50 years with comorbidities, and unwell ≤14 days with suspected COVID-19 in the community, and were randomised to usual care, usual care plus inhaled budesonide (800µg twice daily for 14 days), or usual care plus other interventions. The co-primary endpoints are time to first self-reported recovery, and hospitalisation/death related to COVID-19, within 28 days, analysed using Bayesian models. Trial registration: ISRCTN86534580. Funded by United Kingdom Research Innovation (MC_PC_19079). Findings The trial opened on April 2, 2020, with the first 4 intervention arms stopped on futility grounds. Randomisation to the budesonide arm occurred from November 27, 2020 until March 31, 2021, when the pre-specified time to recovery superiority criterion was met. The primary analysis model includes 2530 SARS-CoV-2 positive participants, randomised to budesonide (n=787), usual care (n=1069), and other treatments (n=674). Time to first self-reported recovery was shorter in the budesonide group versus usual care (hazard ratio 1·21 [95% credible interval 1·08 to 1·36], probability of superiority >O·999, estimated benefit 2·94 [95% credible interval 1·19 to 5·12] days). An estimated 6·8% COVID-19 related hospitalisations/deaths occurred in the budesonide group versus 8·8% in usual care (estimated absolute difference, 2·0% [95% credible interval -0.2% to 4.5%], probability of superiority 0.963). In the main secondary analysis of admissions using only concurrent controls, admissions occurred in 6.6% (3.8 to 10.1%) in the budesonide group versus 8.8% (95% CI 5.2 to 13.1%), with an absolute difference of 2.2% (0.0 to 4.9%) and a hazard ratio of 0.73 (0.53 to 1.00), meeting the pre-specified superiority probability of 0.975. Three serious adverse events occurred in the budesonide group and three in usual care.


Subject(s)
COVID-19 , Humans , Budesonide/adverse effects , SARS-CoV-2 , Bayes Theorem , United Kingdom/epidemiology , Treatment Outcome
4.
Lancet ; 398(10303): 843-855, 2021 09 04.
Article in English | MEDLINE | ID: covidwho-2106189

ABSTRACT

BACKGROUND: A previous efficacy trial found benefit from inhaled budesonide for COVID-19 in patients not admitted to hospital, but effectiveness in high-risk individuals is unknown. We aimed to establish whether inhaled budesonide reduces time to recovery and COVID-19-related hospital admissions or deaths among people at high risk of complications in the community. METHODS: PRINCIPLE is a multicentre, open-label, multi-arm, randomised, controlled, adaptive platform trial done remotely from a central trial site and at primary care centres in the UK. Eligible participants were aged 65 years or older or 50 years or older with comorbidities, and unwell for up to 14 days with suspected COVID-19 but not admitted to hospital. Participants were randomly assigned to usual care, usual care plus inhaled budesonide (800 µg twice daily for 14 days), or usual care plus other interventions, and followed up for 28 days. Participants were aware of group assignment. The coprimary endpoints are time to first self-reported recovery and hospital admission or death related to COVID-19, within 28 days, analysed using Bayesian models. The primary analysis population included all eligible SARS-CoV-2-positive participants randomly assigned to budesonide, usual care, and other interventions, from the start of the platform trial until the budesonide group was closed. This trial is registered at the ISRCTN registry (ISRCTN86534580) and is ongoing. FINDINGS: The trial began enrolment on April 2, 2020, with randomisation to budesonide from Nov 27, 2020, until March 31, 2021, when the prespecified time to recovery superiority criterion was met. 4700 participants were randomly assigned to budesonide (n=1073), usual care alone (n=1988), or other treatments (n=1639). The primary analysis model includes 2530 SARS-CoV-2-positive participants, with 787 in the budesonide group, 1069 in the usual care group, and 974 receiving other treatments. There was a benefit in time to first self-reported recovery of an estimated 2·94 days (95% Bayesian credible interval [BCI] 1·19 to 5·12) in the budesonide group versus the usual care group (11·8 days [95% BCI 10·0 to 14·1] vs 14·7 days [12·3 to 18·0]; hazard ratio 1·21 [95% BCI 1·08 to 1·36]), with a probability of superiority greater than 0·999, meeting the prespecified superiority threshold of 0·99. For the hospital admission or death outcome, the estimated rate was 6·8% (95% BCI 4·1 to 10·2) in the budesonide group versus 8·8% (5·5 to 12·7) in the usual care group (estimated absolute difference 2·0% [95% BCI -0·2 to 4·5]; odds ratio 0·75 [95% BCI 0·55 to 1·03]), with a probability of superiority 0·963, below the prespecified superiority threshold of 0·975. Two participants in the budesonide group and four in the usual care group had serious adverse events (hospital admissions unrelated to COVID-19). INTERPRETATION: Inhaled budesonide improves time to recovery, with a chance of also reducing hospital admissions or deaths (although our results did not meet the superiority threshold), in people with COVID-19 in the community who are at higher risk of complications. FUNDING: National Institute of Health Research and United Kingdom Research Innovation.


Subject(s)
Budesonide/administration & dosage , COVID-19 Drug Treatment , Glucocorticoids/administration & dosage , Administration, Inhalation , Aged , Bayes Theorem , COVID-19/mortality , Female , Hospitalization , Humans , Male , Middle Aged , Prospective Studies , Risk Factors , SARS-CoV-2 , Treatment Outcome
5.
Elife ; 112022 08 01.
Article in English | MEDLINE | ID: covidwho-2067162

ABSTRACT

Microscopic colitis is an inflammatory bowel disease divided into two subtypes: collagenous colitis and lymphocytic colitis. With an increasing incidence of microscopic colitis exceeding those of ulcerative and Crohn's disease among elderly people in some countries, microscopic colitis is a debilitating life experience. Therefore, physicians should be familiar with its clinical features and management strategies because the disease deserves the same attention as the classical inflammatory bowel diseases. Here, state-of-the-art knowledge of microscopic colitis is provided from a global perspective with reference to etiopathology and how to establish the diagnosis with the overall aim to create awareness and improve rational management in clinical practice. The immune system and a dysregulated immune response seem to play a key role combined with risk factors (e.g. cigarette smoking) in genetically predisposed individuals. The symptoms are characterized by recurrent or chronic nonbloody, watery diarrhea, urgency, weight loss, and a female preponderance. As biomarkers are absent, the diagnosis relies on colonoscopy with a histological assessment of biopsy specimens from all parts of the colon. Although the disease is not associated with a risk of colorectal cancer, a recent nationwide, population-based cohort study found an increased risk of lymphoma and lung cancer. Budesonide is the first-line therapy for management, whereas immunomodulatory drugs (including biologics) and drugs with antidiarrheal properties may be indicated in those failing, dependent, or intolerant to budesonide. In microscopic colitis induced by checkpoint inhibitors, a drug class used increasingly for a wide range of malignancies, a more aggressive therapeutic approach with biologics introduced early seems reasonable. However, particular attention needs to be drawn to the existence of incomplete forms of microscopic colitis with the risk of being overlooked in routine clinical settings.


Subject(s)
Biological Products , Colitis, Lymphocytic , Colitis, Microscopic , Inflammatory Bowel Diseases , Aged , Budesonide/therapeutic use , Cohort Studies , Colitis, Lymphocytic/complications , Colitis, Lymphocytic/diagnosis , Colitis, Lymphocytic/epidemiology , Colitis, Microscopic/diagnosis , Colitis, Microscopic/epidemiology , Colitis, Microscopic/pathology , Female , Humans
6.
Can Fam Physician ; 68(5): 355, 2022 05.
Article in English | MEDLINE | ID: covidwho-1848178
7.
Lancet Respir Med ; 9(7): e61, 2021 07.
Article in English | MEDLINE | ID: covidwho-1778525
8.
Lancet Respir Med ; 10(6): 545-556, 2022 06.
Article in English | MEDLINE | ID: covidwho-1778526

ABSTRACT

BACKGROUND: Community-based clinical trials of the inhaled corticosteroid budesonide in early COVID-19 have shown improved patient outcomes. We aimed to understand the inflammatory mechanism of budesonide in the treatment of early COVID-19. METHODS: The STOIC trial was a randomised, open label, parallel group, phase 2 clinical intervention trial where patients were randomly assigned (1:1) to receive usual care (as needed antipyretics were only available treatment) or inhaled budesonide at a dose of 800 µg twice a day plus usual care. For this experimental analysis, we investigated the nasal mucosal inflammatory response in patients recruited to the STOIC trial and in a cohort of SARS-CoV-2-negative healthy controls, recruited from a long-term observational data collection study at the University of Oxford. In patients with SARS-CoV-2 who entered the STOIC study, nasal epithelial lining fluid was sampled at day of randomisation (day 0) and at day 14 following randomisation, blood samples were also collected at day 28 after randomisation. Nasal epithelial lining fluid and blood samples were collected from the SARS-CoV-2 negative control cohort. Inflammatory mediators in the nasal epithelial lining fluid and blood were assessed for a range of viral response proteins, and innate and adaptive response markers using Meso Scale Discovery enzyme linked immunoassay panels. These samples were used to investigate the evolution of inflammation in the early COVID-19 disease course and assess the effect of budesonide on inflammation. FINDINGS: 146 participants were recruited in the STOIC trial (n=73 in the usual care group; n=73 in the budesonide group). 140 nasal mucosal samples were available at day 0 (randomisation) and 122 samples at day 14. At day 28, whole blood was collected from 123 participants (62 in the budesonide group and 61 in the usual care group). 20 blood or nasal samples were collected from healthy controls. In early COVID-19 disease, there was an enhanced inflammatory airway response with the induction of an anti-viral and T-helper 1 and 2 (Th1/2) inflammatory response compared with healthy individuals. Individuals with COVID-19 who clinically deteriorated (ie, who met the primary outcome) showed an early blunted respiratory interferon response and pronounced and persistent Th2 inflammation, mediated by CC chemokine ligand (CCL)-24, compared with those with COVID-19 who did not clinically deteriorate. Over time, the natural course of COVID-19 showed persistently high respiratory interferon concentrations and elevated concentrations of the eosinophil chemokine, CCL-11, despite clinical symptom improvement. There was persistent systemic inflammation after 28 days following COVID-19, including elevated concentrations of interleukin (IL)-6, tumour necrosis factor-α, and CCL-11. Budesonide treatment modulated inflammation in the nose and blood and was shown to decrease IL-33 and increase CCL17. The STOIC trial was registered with ClinicalTrials.gov, NCT04416399. INTERPRETATION: An initial blunted interferon response and heightened T-helper 2 inflammatory response in the respiratory tract following SARS-CoV-2 infection could be a biomarker for predicting the development of severe COVID-19 disease. The clinical benefit of inhaled budesonide in early COVID-19 is likely to be as a consequence of its inflammatory modulatory effect, suggesting efficacy by reducing epithelial damage and an improved T-cell response. FUNDING: Oxford National Institute of Health Research Biomedical Research Centre and AstraZeneca.


Subject(s)
COVID-19 Drug Treatment , Adrenal Cortex Hormones/therapeutic use , Antiviral Agents/therapeutic use , Budesonide/therapeutic use , Humans , Inflammation/drug therapy , Interferons , Respiratory Mucosa , SARS-CoV-2 , Treatment Outcome
10.
J Infect Public Health ; 15(1): 109-111, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1596105
11.
Lancet ; 398(10317): 2146-2147, 2021 12 11.
Article in English | MEDLINE | ID: covidwho-1562142
13.
Lancet ; 398(10317): 2147, 2021 12 11.
Article in English | MEDLINE | ID: covidwho-1560761
15.
BMJ Open Gastroenterol ; 8(1)2021 10.
Article in English | MEDLINE | ID: covidwho-1476451

ABSTRACT

We present a case of a male patient in his mid-30s with COVID-19-induced lung failure requiring extracorporeal membrane oxygenation, who needed an emergency oesophagogastroduodenoscopy due to major upper gastrointestinal bleeding. Endoscopy exposed severe ulcerative duodenitis with diffuse mucosal bleeding. While CT angiography did not show any signs of ischaemia, histopathology revealed duodenitis with substantial inflammatory cell infiltrates consisting of neutrophils and CD3+ T lymphocytes with equal CD4+/CD8+ distribution. Since the composition of cell infiltrates coincides with changes in inflammatory patterns of the respiratory mucosa from patients with COVID-19 and in COVID-19-associated enterocolitis, and systemic dexamethasone treatment became standard of care in ventilated intensive care unit patients with COVID-19 infection, we initiated an individualised therapeutic attempt to treat the duodenitis with topical enteral budesonide. Follow-up oesophagogastroduodenoscopies within 4 weeks of enteral budesonide administration revealed a full clinical and histological healing of the duodenal mucosa with marked reduction of neutrophilic and lymphocytic infiltrates.To our knowledge, the current report is the first description of enteral budesonide treatment of duodenitis in a patient with COVID-19 infection and warrants further investigation, whether budesonide might constitute a novel therapeutic strategy for the management of COVID-19-related intestinal mucosal damage.


Subject(s)
COVID-19 , Duodenitis , Budesonide/adverse effects , Duodenitis/chemically induced , Gastrointestinal Hemorrhage/chemically induced , Humans , Male , SARS-CoV-2
17.
Lancet Respir Med ; 9(7): e59, 2021 07.
Article in English | MEDLINE | ID: covidwho-1337047
20.
Lancet Respir Med ; 9(7): 763-772, 2021 07.
Article in English | MEDLINE | ID: covidwho-1337037

ABSTRACT

BACKGROUND: Multiple early reports of patients admitted to hospital with COVID-19 showed that patients with chronic respiratory disease were significantly under-represented in these cohorts. We hypothesised that the widespread use of inhaled glucocorticoids among these patients was responsible for this finding, and tested if inhaled glucocorticoids would be an effective treatment for early COVID-19. METHODS: We performed an open-label, parallel-group, phase 2, randomised controlled trial (Steroids in COVID-19; STOIC) of inhaled budesonide, compared with usual care, in adults within 7 days of the onset of mild COVID-19 symptoms. The trial was done in the community in Oxfordshire, UK. Participants were randomly assigned to inhaled budsonide or usual care stratified for age (≤40 years or >40 years), sex (male or female), and number of comorbidities (≤1 and ≥2). Randomisation was done using random sequence generation in block randomisation in a 1:1 ratio. Budesonide dry powder was delivered using a turbohaler at a dose of 400 µg per actuation. Participants were asked to take two inhalations twice a day until symptom resolution. The primary endpoint was COVID-19-related urgent care visit, including emergency department assessment or hospitalisation, analysed for both the per-protocol and intention-to-treat (ITT) populations. The secondary outcomes were self-reported clinical recovery (symptom resolution), viral symptoms measured using the Common Cold Questionnare (CCQ) and the InFLUenza Patient Reported Outcome Questionnaire (FLUPro), body temperature, blood oxygen saturations, and SARS-CoV-2 viral load. The trial was stopped early after independent statistical review concluded that study outcome would not change with further participant enrolment. This trial is registered with ClinicalTrials.gov, NCT04416399. FINDINGS: From July 16 to Dec 9, 2020, 167 participants were recruited and assessed for eligibility. 21 did not meet eligibility criteria and were excluded. 146 participants were randomly assigned-73 to usual care and 73 to budesonide. For the per-protocol population (n=139), the primary outcome occurred in ten (14%) of 70 participants in the usual care group and one (1%) of 69 participants in the budesonide group (difference in proportions 0·131, 95% CI 0·043 to 0·218; p=0·004). For the ITT population, the primary outcome occurred in 11 (15%) participants in the usual care group and two (3%) participants in the budesonide group (difference in proportions 0·123, 95% CI 0·033 to 0·213; p=0·009). The number needed to treat with inhaled budesonide to reduce COVID-19 deterioration was eight. Clinical recovery was 1 day shorter in the budesonide group compared with the usual care group (median 7 days [95% CI 6 to 9] in the budesonide group vs 8 days [7 to 11] in the usual care group; log-rank test p=0·007). The mean proportion of days with a fever in the first 14 days was lower in the budesonide group (2%, SD 6) than the usual care group (8%, SD 18; Wilcoxon test p=0·051) and the proportion of participants with at least 1 day of fever was lower in the budesonide group when compared with the usual care group. As-needed antipyretic medication was required for fewer proportion of days in the budesonide group compared with the usual care group (27% [IQR 0-50] vs 50% [15-71]; p=0·025) Fewer participants randomly assigned to budesonide had persistent symptoms at days 14 and 28 compared with participants receiving usual care (difference in proportions 0·204, 95% CI 0·075 to 0·334; p=0·003). The mean total score change in the CCQ and FLUPro over 14 days was significantly better in the budesonide group compared with the usual care group (CCQ mean difference -0·12, 95% CI -0·21 to -0·02 [p=0·016]; FLUPro mean difference -0·10, 95% CI -0·21 to -0·00 [p=0·044]). Blood oxygen saturations and SARS-CoV-2 load, measured by cycle threshold, were not different between the groups. Budesonide was safe, with only five (7%) participants reporting self-limiting adverse events. INTERPRETATION: Early administration of inhaled budesonide reduced the likelihood of needing urgent medical care and reduced time to recovery after early COVID-19. FUNDING: National Institute for Health Research Biomedical Research Centre and AstraZeneca.


Subject(s)
Budesonide/administration & dosage , COVID-19 Drug Treatment , Glucocorticoids/administration & dosage , Administration, Inhalation , Adult , Aged , Female , Humans , Male , Middle Aged , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL